login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005942
a(2n) = a(n) + a(n+1), a(2n+1) = 2a(n+1), if n >= 2.
(Formerly M1007)
15
1, 2, 4, 6, 10, 12, 16, 20, 22, 24, 28, 32, 36, 40, 42, 44, 46, 48, 52, 56, 60, 64, 68, 72, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182
OFFSET
0,2
COMMENTS
a(n) is the subword complexity (or factor complexity) of Thue-Morse sequence A010060, that is, the number of factors of length n in A010060. See Allouche-Shallit (2003). - N. J. A. Sloane, Jul 10 2012
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003. See Problem 10, p. 335. - From N. J. A. Sloane, Jul 10 2012
J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008. See p. 83.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math. 24 (1989), 83-96.
A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989), 333-348.
Jakub Konieczny and Clemens Müllner, Arithmetical subword complexity of automatic sequences, arXiv:2309.03180 [math.NT], 2023.
Hsien-Kuei Hwang, S. Janson, and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.
Luís M. S. Russo, Ana D. Correia, Gonzalo Navarro, and Alexandre P. Francisco, Approximating Optimal Bidirectional Macro Schemes, arXiv:2003.02336 [cs.DS], 2020.
FORMULA
a(n) = 2*(A006165(n-1) + n - 1), n > 1.
G.f. (1+x^2)/(1-x)^2 + 2*x^2/(1-x)^2 * Sum_{k>=0} (x^2^(k+1)-x^(3*2^k)). - Ralf Stephan, Jun 04 2003
For n > 2, a(n) = 3*(n-1) + A053646(n-1). - Max Alekseyev, May 15 2011
a(n) = 2*A275202(n-1) for n > 1. - N. J. A. Sloane, Jun 04 2019
MATHEMATICA
a[0] = 1; a[1] = 2; a[2] = 4; a[3] = 6; a[n_?EvenQ] := a[n] = a[n/2] + a[n/2 + 1]; a[n_?OddQ] := a[n] = 2*a[(n + 1)/2]; Array[a, 60, 0] (* Jean-François Alcover, Apr 11 2011 *)
PROG
(PARI) a(n)=if(n<4, 2*max(0, n)+(n==0), if(n%2, 2*a((n+1)/2), a(n/2)+a(n/2+1)))
(Haskell)
import Data.List (transpose)
a005942 n = a005942_list !! n
a005942_list = 1 : 2 : 4 : 6 : zipWith (+) (drop 6 ts) (drop 5 ts) where
ts = concat $ transpose [a005942_list, a005942_list]
-- Reinhard Zumkeller, Nov 15 2012
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Typo in definition corrected by Reinhard Zumkeller, Nov 15 2012
STATUS
approved