|
|
A005920
|
|
Tricapped prism numbers.
(Formerly M4611)
|
|
6
|
|
|
1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022
|
|
MAPLE
|
a:=n->(3*n^3+7*n^2+6*n+2)/2: seq(a(n), n=0..60);
|
|
MATHEMATICA
|
LinearRecurrence[{4, -6, 4, -1}, {1, 9, 33, 82}, 40] (* Harvey P. Dale, Sep 25 2012 *)
|
|
PROG
|
(Haskell)
a005920 n = (n * (n * (3 * n + 7) + 6) + 2) `div` 2
(Magma) [(3*n^3+7*n^2+6*n+2)/2 : n in [0..50]]; // Wesley Ivan Hurt, May 05 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|