|
|
A005919
|
|
Number of points on surface of tricapped prism: 7n^2 + 2 for n > 0, a(0)=1.
(Formerly M4607)
|
|
3
|
|
|
1, 9, 30, 65, 114, 177, 254, 345, 450, 569, 702, 849, 1010, 1185, 1374, 1577, 1794, 2025, 2270, 2529, 2802, 3089, 3390, 3705, 4034, 4377, 4734, 5105, 5490, 5889, 6302, 6729, 7170, 7625, 8094, 8577, 9074, 9585, 10110, 10649, 11202, 11769, 12350, 12945, 13554
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=0..44.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
|
|
MAPLE
|
A005919:=-(z+1)*(z**2+5*z+1)/(z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
Join[{1}, 7*Range[50]^2+2] (* or *) CoefficientList[Series[(-x^3-6x^2-6x-1)/(x-1)^3, {x, 0, 50}], x] (* Harvey P. Dale, Jan 13 2013 *)
|
|
CROSSREFS
|
Cf. A206399.
Sequence in context: A195319 A073399 A225275 * A084370 A000439 A002414
Adjacent sequences: A005916 A005917 A005918 * A005920 A005921 A005922
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Erich Friedman, Aug 08 2005
|
|
STATUS
|
approved
|
|
|
|