login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085279
Expansion of (1 - 2*x - 2*x^2)/((1 - 2*x)*(1 - 3*x)).
7
1, 3, 7, 17, 43, 113, 307, 857, 2443, 7073, 20707, 61097, 181243, 539633, 1610707, 4815737, 14414443, 43177793, 129402307, 387944777, 1163310043, 3488881553, 10464547507, 31389448217, 94159956043, 282463090913, 847355718307
OFFSET
0,2
COMMENTS
Binomial transform of A001045(n)+1.
For n > 1, also the number of independent vertex sets in the (n-1)-book graph. - Eric W. Weisstein, Aug 16 2017
LINKS
Eric Weisstein's World of Mathematics, Book Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
FORMULA
a(n) = (3*2^n + 3^n - 0^n)/3.
a(n) = 2^n + 3^(n-1) for n >= 1.
G.f.: (1 - 2*x - 2*x*x)/((1 - 2*x)*(1 - 3*x)).
a(n) = 5*a(n-1) - 6*a(n-2) for n > 1. - Vincenzo Librandi, Sep 12 2014
E.g.f.: (1/3)*(exp(3*x) + 3*exp(2*x) -1). - G. C. Greubel, Aug 17 2017
MAPLE
seq(2^n + (3^n - charfcn[0](n))/3, n=0..100); # Robert Israel, Sep 12 2014
MATHEMATICA
CoefficientList[Series[(1 - 2 x - 2 x^2)/((1 - 2 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 12 2014 *)
Join[{1}, LinearRecurrence[{5, -6}, {3, 7}, 20]] (* Eric W. Weisstein, Aug 16 2017 *)
Join[{1}, Table[2^n + 3^(n - 1), {n, 20}]] (* Eric W. Weisstein, Aug 16 2017 *)
PROG
(Magma) [1] cat [2^n+3^(n-1): n in [1..30]]; // Vincenzo Librandi, Sep 12 2014
(PARI) Vec((1-2*x-2*x*x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Michel Marcus, Sep 12 2014
CROSSREFS
Cf. A001045.
Sequence in context: A192908 A078679 A025577 * A153133 A123601 A115325
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 25 2003
STATUS
approved