login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192908
Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.
3
1, 1, 3, 7, 17, 43, 111, 289, 755, 1975, 5169, 13531, 35423, 92737, 242787, 635623, 1664081, 4356619, 11405775, 29860705, 78176339, 204668311, 535828593, 1402817467, 3672623807, 9615053953, 25172538051, 65902560199
OFFSET
0,3
COMMENTS
The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.
FORMULA
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n>3.
G.f.: 1 + x*(1 - x - x^2)/((1 - x)*(1 - 3*x + x^2)). - R. J. Mathar, Jul 13 2011
a(n) = 2*Fibonacci(2*n-2) + 1 for n>0, a(0)=1. - Bruno Berselli, Dec 27 2016
a(n) = -1 + 3*a(n-1) - a(n-2) with a(1) = 1 and a(2) = 3. Cf. A055588 and A097136. - Peter Bala, Nov 12 2017
MATHEMATICA
u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 0; f = 1;
q = x^2; s = u*x + v; z = 26;
p[0, x_] := a; p[1, x_] := b*x + c
p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
Table[Expand[p[n, x]], {n, 0, 8}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192908 *)
u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A069403 *)
Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
LinearRecurrence[{4, -4, 1}, {1, 1, 3, 7}, 30] (* G. C. Greubel, Jan 11 2019 *)
PROG
(PARI) vector(30, n, n--; if(n==0, 1, 1+2*fibonacci(2*n-2))) \\ G. C. Greubel, Jan 11 2019
(Magma) [1] cat [1+2*Fibonacci(2*(n-1)): n in [1..30]]; // G. C. Greubel, Jan 11 2019
(Sage) [1]+[1+2*fibonacci(2*(n-1)) for n in (1..30)] # G. C. Greubel, Jan 11 2019
(GAP) Concatenation([1], List([1..30], n -> 1+2*Fibonacci(2*(n-1)))); # G. C. Greubel, Jan 11 2019
CROSSREFS
Cf. A000045; A052995: 2*Fibonacci(2*n-1) for n>0.
Sequence in context: A142975 A211277 A114589 * A078679 A025577 A085279
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved