login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114589
Number of hill-free Dyck paths of semilength n+3 and having no peaks at even levels (a hill in a Dyck path is a peak at level 1).
2
1, 1, 3, 7, 17, 43, 110, 286, 753, 2003, 5376, 14540, 39589, 108427, 298512, 825664, 2293271, 6393539, 17885835, 50191175, 141247519, 398537101, 1127203038, 3195229662, 9076078057, 25830193513, 73643406563, 210312889095
OFFSET
0,3
COMMENTS
Column 0 of A114588. The number of hill-free Dyck paths having no peaks at odd level are given by the Riordan numbers (A005043).
From Paul Barry, Jul 05 2009: (Start)
The sequence 1,0,0,1,1,3,7,...
has g.f. ((1+x)*(1+2*x)-sqrt((1+x)*(1-3*x)))/(2*x*(2+2*x+x^2)).
It is the inverse binomial transform of A035929(n+1). (End)
LINKS
FORMULA
G.f.: (1 -z -2*z^2 -2*z^3 -sqrt(1-3*z^2-2*z))/(2*z^4*(2+2*z+z^2)).
a(n) ~ 3^(n+11/2) / (50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+4)*a(n) +2*(-n-1)*a(n-1) +3*(-3*n-4)*a(n-2) +(-8*n-11)*a(n-3) +3*(-n-1)*a(n-4)=0. - R. J. Mathar, Jul 02 2018
EXAMPLE
a(2)=3 because we have UUUDDUUDDD, UUUDUDUDDD and UUUUUDDDDD, where U=(1,1), D=(1,-1).
MAPLE
G:=(1-z-2*z^2-2*z^3-sqrt(1-3*z^2-2*z))/2/z^4/(2+2*z+z^2): Gser:=series(G, z=0, 35): 1, seq(coeff(Gser, z^n), n=1..30);
MATHEMATICA
CoefficientList[Series[(1-x-2*x^2-2*x^3-Sqrt[1-3*x^2-2*x])/2/x^4 /(2+2*x+x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+('x^50); Vec((1-x-2*x^2-2*x^3-sqrt(1-3*x^2-2*x))/(2*x^4*(2+2*x+x^2))) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Sequence in context: A134184 A142975 A211277 * A192908 A078679 A025577
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 11 2005
STATUS
approved