login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114591
A composite analog of the Moebius function: Sum_{n>=1} a(n)/n^s = Product_{c=composites} (1 - 1/c^s) = zeta(s) *Product_{k>=2} (1 - 1/k^s).
4
1, 0, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, -1, 0, 0, -1, -1, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, -1, -1, 0, 1, -1, -1, -1, -1, 0, 0, -1, 0, -1, -1, 0, 1, 0, -1, -1, 0, -1, -1, 0, -1, -1, -1, 0, 2, 0, -1, -1, -1, -1, -1, 0, 1
OFFSET
1,72
COMMENTS
For n >= 2, Sum_{k|n} A050370(n/k) * a(k) = 0.
Sum_{n>=1} a(n)/n^2 = Pi^2/12.
a(n) = Sum_{k|n} A114592(k).
FORMULA
a(1) = 1; for n>= 2, a(n) = sum, over ways to factor n into any number of distinct composites, of (-1)^(number of composites in a factorization). (See example.)
EXAMPLE
24 can be factored into distinct composites as 24 and as 4*6.
So a(24) = (-1)^1 + (-1)^2 = 0, where the 1 exponent is due to the 1 factor of the 24 = 24 factorization and the 2 exponent is due to the 2 factors of the 24 = 4*6 factorization.
MATHEMATICA
a[n_] := Total[((-1)^Length[#]& ) /@ Select[Subsets[Select[Rest[Divisors[n]], !PrimeQ[#]& ]], Times @@ # == n & ]]; Table[a[n], {n, 1, 80}]
PROG
(PARI)
A114592aux(n, k) = if(1==n, 1, sumdiv(n, d, if(d > 1 && d <= k && d < n, (-1)*A114592aux(n/d, d-1))) - (n<=k)); \\ After code in A045778.
A114592(n) = A114592aux(n, n);
A114591(n) = sumdiv(n, d, A114592(d)); \\ Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Leroy Quet, Dec 11 2005
EXTENSIONS
More terms from Jean-François Alcover, Sep 26 2013
STATUS
approved