login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192911
Constant term in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).
3
1, 0, 0, 3, 5, 16, 52, 147, 442, 1320, 3916, 11664, 34717, 103298, 307440, 914949, 2722885, 8103424, 24116008, 71769885, 213589298, 635647790, 1891705884, 5629770720, 16754357925, 49861446392, 148389084968, 441610143507
OFFSET
0,4
COMMENTS
Regarding polynomial reduction, see A192232 and A192744. In the case of the reduction at A192911, each term in the three resulting sequences is a product of a Fibonacci number and a tribonacci numbers
A192911(n) = F(n+1)*T3(n+1), where F=A000045, T3=A000073.
A192912(n) = F(n+1)*T2(n), where T2=A001590.
A192913(n) = F(n+1)*T3(n).
All three obey the same linear recurrence, shown below at Formula.
FORMULA
a(n) = a(n-1) + 4*a(n-2) + 5*a(n-3) + 2*a(n-4) - a(n-5) + a(n-6).
G.f.: (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1). - Colin Barker, Aug 31 2012
EXAMPLE
The first six polynomials and reductions:
1 -> 1
x -> 2
2*x^2 -> 2*x^2
3*x^3 -> 3 + 3*x + 3*x^2
5*x^4 -> 5 + 10*x + 10*x^2
8*x^5 -> 16 + 24*x + 32*x^2
MATHEMATICA
q = x^3; s = x^2 + x + 1; z = 22;
p[0, x_] := 1; p[1, x_] := x;
p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192911 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192912 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192913 *)
LinearRecurrence[{1, 4, 5, 2, -1, 1}, {1, 0, 0, 3, 5, 16}, 28] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3 +4*x^2+x-1)) \\ G. C. Greubel, Jan 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1) )); // G. C. Greubel, Jan 12 2019
(Sage) ((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
(GAP) a:=[1, 0, 0, 3, 5, 16];; for n in [7..30] do a[n]:=a[n-1]+4*a[n-2] + 5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved