login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Constant term in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).
3

%I #19 Sep 08 2022 08:45:58

%S 1,0,0,3,5,16,52,147,442,1320,3916,11664,34717,103298,307440,914949,

%T 2722885,8103424,24116008,71769885,213589298,635647790,1891705884,

%U 5629770720,16754357925,49861446392,148389084968,441610143507

%N Constant term in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).

%C Regarding polynomial reduction, see A192232 and A192744. In the case of the reduction at A192911, each term in the three resulting sequences is a product of a Fibonacci number and a tribonacci numbers

%C A192911(n) = F(n+1)*T3(n+1), where F=A000045, T3=A000073.

%C A192912(n) = F(n+1)*T2(n), where T2=A001590.

%C A192913(n) = F(n+1)*T3(n).

%C All three obey the same linear recurrence, shown below at Formula.

%H G. C. Greubel, <a href="/A192911/b192911.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,5,2,-1,1).

%F a(n) = a(n-1) + 4*a(n-2) + 5*a(n-3) + 2*a(n-4) - a(n-5) + a(n-6).

%F G.f.: (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1). - _Colin Barker_, Aug 31 2012

%e The first six polynomials and reductions:

%e 1 -> 1

%e x -> 2

%e 2*x^2 -> 2*x^2

%e 3*x^3 -> 3 + 3*x + 3*x^2

%e 5*x^4 -> 5 + 10*x + 10*x^2

%e 8*x^5 -> 16 + 24*x + 32*x^2

%t q = x^3; s = x^2 + x + 1; z = 22;

%t p[0, x_] := 1; p[1, x_] := x;

%t p[n_, x_] := p[n - 1, x]*x + p[n - 2, x]*x^2;

%t Table[Expand[p[n, x]], {n, 0, 7}]

%t reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

%t u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192911 *)

%t u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192912 *)

%t u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192913 *)

%t LinearRecurrence[{1,4,5,2,-1,1},{1,0,0,3,5,16},28] (* _Ray Chandler_, Aug 02 2015 *)

%o (PARI) my(x='x+O('x^30)); Vec((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3 +4*x^2+x-1)) \\ _G. C. Greubel_, Jan 12 2019

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1) )); // _G. C. Greubel_, Jan 12 2019

%o (Sage) ((x+1)*(2*x^2+2*x-1)/(x^6-x^5+2*x^4+5*x^3+4*x^2+x-1)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 12 2019

%o (GAP) a:=[1,0,0,3,5,16];; for n in [7..30] do a[n]:=a[n-1]+4*a[n-2] + 5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # _G. C. Greubel_, Jan 12 2019

%Y Cf. A192232, A192744, A192912, A192913.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Jul 12 2011