The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192914 Constant term in the reduction by (x^2 -> x + 1) of the polynomial C(n)*x^n, where C=A000285. 5
 1, 0, 5, 9, 28, 69, 185, 480, 1261, 3297, 8636, 22605, 59185, 154944, 405653, 1062009, 2780380, 7279125, 19057001, 49891872, 130618621, 341963985, 895273340, 2343856029, 6136294753, 16065028224, 42058789925, 110111341545, 288275234716, 754714362597 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A192872. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). G.f.: (1 + 3*x^2 - 2*x)/((1 + x)*(x^2 - 3*x + 1)). - R. J. Mathar, May 08 2014 a(n) = (2^(-1-n)*(3*(-1)^n*2^(2+n) + (3 + sqrt(5))^n*(-1 + 3*sqrt(5)) - (3-sqrt(5))^n*(1 + 3*sqrt(5))))/5. - Colin Barker, Sep 29 2016 a(n) = F(n+1)^2 + F(n)*F(n-3). - Bruno Berselli, Feb 15 2017 MATHEMATICA q = x^2; s = x + 1; z = 28; p[0, x_]:= 1; p[1, x_]:= 4 x; p[n_, x_] := p[n-1, x]*x + p[n-2, x]*x^2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *) LinearRecurrence[{2, 2, -1}, {1, 0, 5}, 30] (* or *) With[{F:= Fibonacci}, Table[F[n+1]^2 +F[n]*F[n-3], {n, 0, 30}]] (* G. C. Greubel, Jan 12 2019 *) PROG (PARI) a(n) = round((2^(-1-n)*(3*(-1)^n*2^(2+n)+(3+sqrt(5))^n*(-1+3*sqrt(5))-(3-sqrt(5))^n*(1+3*sqrt(5))))/5) \\ Colin Barker, Sep 29 2016 (PARI) Vec((1+3*x^2-2*x)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 29 2016 (PARI) {f=fibonacci}; vector(30, n, n--; f(n+1)^2 +f(n)*f(n-3)) \\ G. C. Greubel, Jan 12 2019 (Magma) F:=Fibonacci; [F(n+1)^2+F(n)*F(n-3): n in [0..30]]; // Bruno Berselli, Feb 15 2017 (Sage) f=fibonacci; [f(n+1)^2 +f(n)*f(n-3) for n in (0..30)] # G. C. Greubel, Jan 12 2019 (GAP) F:=Fibonacci; List([0..30], n -> F(n+1)^2 +F(n)*F(n-3)); # G. C. Greubel, Jan 12 2019 CROSSREFS Cf. A192232, A192744, A192872. Sequence in context: A026587 A147367 A147230 * A303676 A163779 A280487 Adjacent sequences: A192911 A192912 A192913 * A192915 A192916 A192917 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 23:13 EDT 2023. Contains 363061 sequences. (Running on oeis4.)