|
|
A000285
|
|
a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
(Formerly M3246 N1309)
|
|
47
|
|
|
1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620, 180510493, 292072113, 472582606
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(4;n-1-k,k), n >= 1, with a(-1)=3. These are the sums over the SW-NE diagonals in P(4;n,k), the (4,1) Pascal triangle A093561. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also SW-NE diagonal sums in the Pascal (1,3) triangle A095660.
In general, for a Fibonacci sequence beginning with 1,b we have a(n) = (2^(-1-n)*((1-sqrt(5))^n*(1+sqrt(5)-2b) + (1+sqrt(5))^n*(-1+sqrt(5)+2b)))/sqrt(5). In this case we have b=4. - Herbert Kociemba, Dec 18 2011
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 5, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... - R. J. Mathar, Aug 10 2012
a(n) = number of independent vertex subsets (i.e., the Merrifield-Simmons index) of the tree obtained from the path tree P_{n-1} by attaching two pendant edges to one of its endpoints (n >= 2). Example: if n=3, then we have the star tree with edges ab, ac, ad; it has 9 independent vertex susbsets: empty, a, b, c, d, bc, cd, bd, bcd.
For n >= 2, the number a(n-1) is the dimension of a commutative Hecke algebra of type D_n with independent parameters. See Theorem 1.4 and Corollary 1.5 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
|
|
REFERENCES
|
R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 131.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1+3*x)/(1-x-x^2). - Simon Plouffe in his 1992 dissertation
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (3/2)* ((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=5. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 3*Fibonacci(n+2) - 2*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = Fibonacci(n) + Lucas(n+1), see Mathematica field. (End)
|
|
EXAMPLE
|
G.f. = 1 + 4*x + 5*x^2 + 9*x^3 + 14*x^4 + 23*x^5 + 37*x^6 + 60*x^7 + ...
|
|
MAPLE
|
with(combinat):a:=n->2*fibonacci(n)+fibonacci(n+2): seq(a(n), n=0..34);
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1}, {1, 4}, 40] (* or *) Table[(3*LucasL[n]- Fibonacci[n])/2, {n, 40}] (* Harvey P. Dale, Jul 18 2011 *)
a[ n_]:= Fibonacci[n] + LucasL[n+1]; (* Michael Somos, May 28 2014 *)
|
|
PROG
|
(Haskell)
a000285 n = a000285_list !! n
a000285_list = 1 : 4 : zipWith (+) a000285_list (tail a000285_list)
(Maxima) a[0]:1$ a[1]:4$ a[n]:=a[n-1]+a[n-2]$ makelist(a[n], n, 0, 30); /* Martin Ettl, Oct 25 2012 */
(Magma) a0:=1; a1:=4; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
(Sage) f=fibonacci; [f(n+2) +2*f(n) for n in (0..40)] # G. C. Greubel, Nov 08 2019
(GAP) F:=Fibonacci;; List([0..40], n-> F(n+2) +2*F(n) ); // G. C. Greubel, Nov 08 2019
|
|
CROSSREFS
|
Essentially the same as A104449, which only has A104449(0)=3 prefixed.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|