login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192912
Coefficient of x in the reduction by (x^3 -> x + 1) of the polynomial F(n+1)*x^n, where F(n)=A000045 (Fibonacci sequence).
2
0, 1, 0, 3, 10, 24, 78, 231, 680, 2035, 6052, 18000, 53590, 159471, 474580, 1412397, 4203304, 12509144, 37227624, 110790405, 329715412, 981242533, 2920205614, 8690615136, 25863518300, 76970566973, 229066599960, 681708726543
OFFSET
0,4
COMMENTS
See A192911.
FORMULA
(See A192911.)
G.f.: x*(1-x-x^2+2*x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6). - R. J. Mathar, May 08 2014
EXAMPLE
(See A192911.)
MATHEMATICA
(See A192911.)
LinearRecurrence[{1, 4, 5, 2, -1, 1}, {0, 1, 0, 3, 10, 24}, 28] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x-x^2+2*x^3)/(1-x-4*x^2 -5*x^3-2*x^4+x^5-x^6))) \\ G. C. Greubel, Jan 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-x-x^2+2*x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6) )); // G. C. Greubel, Jan 12 2019
(Sage) (x*(1-x-x^2+2*x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
(GAP) a:=[0, 1, 0, 3, 10, 24];; for n in [7..30] do a[n]:=a[n-1]+4*a[n-2]+ 5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved