login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176952
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=0, k=-1 and l=-1.
1
1, 0, -3, -10, -25, -47, -41, 160, 1093, 3987, 10173, 14835, -20271, -249343, -1106383, -3335310, -6444345, -8187, 67250223, 363173857, 1253557435, 2927919099, 2452549371, -18379498375, -127727251897, -501242196457
OFFSET
0,3
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=-1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(19*n-29)*a(n-2) +13*(-n+2)*a(n-3) +4*(-n+5)*a(n-4) +4*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 01 2016
EXAMPLE
a(2)=2*1*0-2-1=-3. a(3)=2*1*(-3)-2+0^2-1-1=-10. a(4)=2*1*(-10)-2+2*0*(-3)-2-1=-25.
MAPLE
l:=-1: : k := -1 : m:=0:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Sequence in context: A340686 A192912 A168062 * A212068 A162607 A267574
KEYWORD
easy,sign
AUTHOR
Richard Choulet, Apr 29 2010
STATUS
approved