The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026587 a(n) = T(n, n-2), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=2. 17
 1, 1, 5, 9, 28, 62, 167, 399, 1024, 2518, 6359, 15819, 39759, 99427, 249699, 626203, 1573524, 3953446, 9943905, 25019005, 62994733, 158680545, 399936573, 1008438757, 2543992514, 6420413940, 16210331727, 40943722115, 103453402718 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 FORMULA a(n) = A026584(n, n-2). Conjecture: (n+2)*a(n) = (3*n+2)*a(n-1) +(3*n+2)*a(n-2) -(11*n-16)*a(n-3) -2*(n-3)*a(n-4) +4*(2*n-9)*a(n-5). - R. J. Mathar, Jun 23 2013 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *) Table[T[n, n-2], {n, 2, 40}] (* G. C. Greubel, Dec 12 2021 *) PROG (Sage) @CachedFunction def T(n, k): # T = A026584 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n//2) else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) [T(n, n-2) for n in (2..40)] # G. C. Greubel, Dec 12 2021 CROSSREFS Cf. A026584, A026585, A026589, A026590, A026591, A026592, A026593, A026594, A026595, A026596, A026597, A026598, A026599, A027282, A027283, A027284, A027285, A027286. Sequence in context: A272315 A301747 A193316 * A147367 A147230 A192914 Adjacent sequences: A026584 A026585 A026586 * A026588 A026589 A026590 KEYWORD nonn AUTHOR Clark Kimberling STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 22:19 EDT 2023. Contains 363151 sequences. (Running on oeis4.)