login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301747
Expansion of Product_{k>=1} (1/(1 - x^k))^(sigma_0(k)^2).
2
1, 1, 5, 9, 28, 48, 130, 226, 532, 941, 2021, 3545, 7210, 12509, 24209, 41715, 77742, 132404, 239655, 403731, 712426, 1188079, 2052070, 3386854, 5745200, 9388740, 15672560, 25376167, 41765597, 67021171, 108932532, 173327693, 278533669, 439653317, 699265665
OFFSET
0,3
LINKS
FORMULA
log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(3)). - Vaclav Kotesovec, Aug 28 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 29 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 26 2018
STATUS
approved