login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027283
a(n) = Sum_{k=0..2*n-1} T(n,k) * T(n,k+1), with T given by A026584.
16
0, 6, 26, 206, 1100, 7314, 42920, 274010, 1677332, 10616070, 66290046, 419754586, 2648500908, 16818685050, 106781976774, 680250643910, 4337083126232, 27709045093274, 177213890858938, 1135003956744310, 7276652578220372, 46702733068082702, 300013046145979184
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=0..2*n-1} A026584(n,k) * A026584(n,k+1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 15 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A027283(n): return sum(T(n, j)*T(n, j+1) for j in (0..2*n-1))
[A027283(n) for n in (1..40)] # G. C. Greubel, Dec 15 2021
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 26 2019
STATUS
approved