login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323868
Number of matrices of size n whose entries cover an initial interval of positive integers.
4
1, 6, 26, 225, 1082, 18732, 94586, 2183340, 21261783, 408990252, 3245265146, 168549405570, 1053716696762, 42565371881772, 921132763911412, 26578273409906775, 260741534058271802, 20313207979541071938, 185603174638656822266, 16066126777466305218690
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(n) * A000670(n).
EXAMPLE
The 42 matrices of size 4 whose entries cover {1,2}:
1222 2111 1122 2211 1212 2121 1221 2112 1112 2221 1121 2212 1211 2122
.
12 21 11 22 12 21 12 21 11 22 11 22 12 21
22 11 22 11 12 21 21 12 12 21 21 12 11 22
.
1 2 1 2 1 2 1 2 1 2 1 2 1 2
2 1 1 2 2 1 2 1 1 2 1 2 2 1
2 1 2 1 1 2 2 1 1 2 2 1 1 2
2 1 2 1 2 1 1 2 2 1 1 2 1 2
The 18 matrices of size 4 whose entries cover {1,2} with multiplicities {2,2}:
[1 1 2 2] [2 2 1 1] [1 2 1 2] [2 1 2 1] [1 2 2 1] [2 1 1 2]
.
[1 1] [2 2] [1 2] [2 1] [1 2] [2 1]
[2 2] [1 1] [1 2] [2 1] [2 1] [1 2]
.
[1] [2] [1] [2] [1] [2]
[1] [2] [2] [1] [2] [1]
[2] [1] [1] [2] [2] [1]
[2] [1] [2] [1] [1] [2]
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n, j), j=1..n))
end:
a:= n-> b(n)*numtheory[tau](n):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 04 2019
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
nrmmats[n_]:=Join@@Table[Table[Table[Position[stn, {i, j}][[1, 1]], {i, d}, {j, n/d}], {stn, Join@@Permutations/@sps[Tuples[{Range[d], Range[n/d]}]]}], {d, Divisors[n]}];
Table[Length[nrmmats[n]], {n, 6}]
Table[DivisorSigma[0, n]*Sum[k! StirlingS2[n, k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 05 2019 *)
PROG
(PARI) a(n) = numdiv(n)*sum(k=0, n, stirling(n, k, 2)*k!); \\ Michel Marcus, Feb 05 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2019
STATUS
approved