login
A026593
a(n) = T(2*n-1, n-1), where T is given by A026584.
17
1, 1, 8, 22, 121, 406, 2155, 7624, 40717, 147001, 792351, 2892044, 15703156, 57728737, 315180458, 1164727748, 6385672193, 23691834033, 130316812494, 485018155062, 2674846358141, 9980763478121, 55161813337474, 206262229900060, 1142020843590221, 4277853480389546, 23721423518350124, 88991782850212510
OFFSET
1,3
LINKS
FORMULA
a(n) = A026584(2*n-1, n-1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n-1, n-1]];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n-1, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021
KEYWORD
nonn
EXTENSIONS
Terms a(19) onward added by G. C. Greubel, Dec 13 2021
STATUS
approved