login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(2*n-1, n-1), where T is given by A026584.
17

%I #12 Dec 13 2021 03:06:25

%S 1,1,8,22,121,406,2155,7624,40717,147001,792351,2892044,15703156,

%T 57728737,315180458,1164727748,6385672193,23691834033,130316812494,

%U 485018155062,2674846358141,9980763478121,55161813337474,206262229900060,1142020843590221,4277853480389546,23721423518350124,88991782850212510

%N a(n) = T(2*n-1, n-1), where T is given by A026584.

%H G. C. Greubel, <a href="/A026593/b026593.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A026584(2*n-1, n-1).

%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)

%t a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n-1,n-1]];

%t Table[a[n], {n, 1, 40}] (* _G. C. Greubel_, Dec 13 2021 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k): # T = A026584

%o if (k==0 or k==2*n): return 1

%o elif (k==1 or k==2*n-1): return (n//2)

%o else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)

%o [T(2*n-1, n-1) for n in (1..40)] # _G. C. Greubel_, Dec 13 2021

%Y Cf. A026584, A026585, A026587, A026589, A026590, A026591, A026592, A026594, A026595, A026596, A026597, A026598, A026599, A027282, A027283, A027284, A027285, A027286.

%K nonn

%O 1,3

%A _Clark Kimberling_

%E Terms a(19) onward added by _G. C. Greubel_, Dec 13 2021