login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192906
Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.
2
1, 1, 2, 7, 23, 72, 225, 705, 2210, 6927, 21711, 68048, 213281, 668481, 2095202, 6566935, 20582567, 64511384, 202196289, 633738369, 1986309058, 6225634847, 19512839199, 61158565024
OFFSET
0,3
COMMENTS
The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.
FORMULA
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: (1-2*x-x^2)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012
MATHEMATICA
(* To obtain very general results, delete the next line. *)
u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 1; f = 0;
q = x^2; s = u*x + v; z = 24;
p[0, x_] := a;
p[1, x_] := b*x + c; p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f; Table[Expand[p[n, x]], {n, 0, 8}] (* p(0, x), p(1, x), ... p(5, x) *)
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192904 *)
u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192905 *)
Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
LinearRecurrence[{3, 0, 1, 1}, {1, 1, 2, 7}, 30] (* G. C. Greubel, Jan 11 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ G. C. Greubel, Jan 11 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 11 2019
(Sage) ((1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
(GAP) a:=[1, 1, 2, 7];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 11 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 12 2011
STATUS
approved