login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001754
Lah numbers: a(n) = n!*binomial(n-1,2)/6.
(Formerly M4863 N2079)
16
0, 0, 1, 12, 120, 1200, 12600, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 366148823040000, 7113748561920000, 145120470663168000, 3101950060425216000, 69337707233034240000, 1617879835437465600000
OFFSET
1,4
COMMENTS
a(n+1) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0)^2, i.e., the sum of the squares of the positive displacement of all letters in all permutations on n letters. - Franklin T. Adams-Watters, Oct 25 2006
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
E.g.f.: ((x/(1-x))^3)/3!.
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^n*f(n,2,-4), n >= 2. - Milan Janjic, Mar 01 2009
a(n) = Sum_{k>=1} k * A260665(n,k). - Alois P. Heinz, Nov 14 2015
D-finite with recurrence (-n+5)*a(n) + (n-2)*(n-3)*a(n-1) = 0, n >= 4. - R. J. Mathar, Jan 06 2021
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 6*(gamma - Ei(1)) + 9, where gamma = A001620 and Ei(1) = A091725.
Sum_{n>=3} (-1)^(n+1)/a(n) = 18*(gamma - Ei(-1)) - 12/e - 9, where Ei(-1) = -A099285 and e = A001113. (End)
MAPLE
[seq(n!*binomial(n-1, 2)/6, n=1..40)];
MATHEMATICA
Table[(n-2)*(n-1)*n!/12, {n, 21}] (* Arkadiusz Wesolowski, Nov 26 2012 *)
With[{nn=30}, CoefficientList[Series[(x/(1-x))^3/6, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 04 2017 *)
PROG
(Magma) [Factorial(n)*Binomial(n-1, 2)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
(Sage) [factorial(n-1)*binomial(n, 3)/2 for n in (1..30)] # G. C. Greubel, May 10 2021
CROSSREFS
Column 3 of A008297.
Column m=3 of unsigned triangle A111596.
Sequence in context: A266393 A129332 A004291 * A037511 A037694 A242810
KEYWORD
nonn,easy
STATUS
approved