Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4863 N2079 #48 May 01 2024 09:00:55
%S 0,0,1,12,120,1200,12600,141120,1693440,21772800,299376000,4390848000,
%T 68497228800,1133317785600,19833061248000,366148823040000,
%U 7113748561920000,145120470663168000,3101950060425216000,69337707233034240000,1617879835437465600000
%N Lah numbers: a(n) = n!*binomial(n-1,2)/6.
%C a(n+1) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0)^2, i.e., the sum of the squares of the positive displacement of all letters in all permutations on n letters. - _Franklin T. Adams-Watters_, Oct 25 2006
%D Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
%D John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A001754/b001754.txt">Table of n, a(n) for n = 1..300</a>
%F E.g.f.: ((x/(1-x))^3)/3!.
%F If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^n*f(n,2,-4), n >= 2. - _Milan Janjic_, Mar 01 2009
%F a(n) = Sum_{k>=1} k * A260665(n,k). - _Alois P. Heinz_, Nov 14 2015
%F D-finite with recurrence (-n+5)*a(n) + (n-2)*(n-3)*a(n-1) = 0, n >= 4. - _R. J. Mathar_, Jan 06 2021
%F From _Amiram Eldar_, May 02 2022: (Start)
%F Sum_{n>=3} 1/a(n) = 6*(gamma - Ei(1)) + 9, where gamma = A001620 and Ei(1) = A091725.
%F Sum_{n>=3} (-1)^(n+1)/a(n) = 18*(gamma - Ei(-1)) - 12/e - 9, where Ei(-1) = -A099285 and e = A001113. (End)
%p [seq(n!*binomial(n-1,2)/6, n=1..40)];
%t Table[(n-2)*(n-1)*n!/12, {n, 21}] (* _Arkadiusz Wesolowski_, Nov 26 2012 *)
%t With[{nn=30},CoefficientList[Series[(x/(1-x))^3/6,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Oct 04 2017 *)
%o (Magma) [Factorial(n)*Binomial(n-1, 2)/6: n in [1..25]]; // _Vincenzo Librandi_, Oct 11 2011
%o (Sage) [factorial(n-1)*binomial(n,3)/2 for n in (1..30)] # _G. C. Greubel_, May 10 2021
%Y Column 3 of A008297.
%Y Column m=3 of unsigned triangle A111596.
%Y Cf. A005990, A053495, A260665.
%Y Cf. A001113, A001620, A091725, A099285.
%K nonn,easy
%O 1,4
%A _N. J. A. Sloane_