login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059369
Triangle of numbers T(n,k) = T(n-1,k-1) + ((n+k-1)/k)*T(n-1,k), n >= 1, 1 <= k <= n, with T(n,1) = n!, T(n,n) = 1; read from right to left.
3
1, 1, 2, 1, 4, 6, 1, 6, 16, 24, 1, 8, 30, 72, 120, 1, 10, 48, 152, 372, 720, 1, 12, 70, 272, 828, 2208, 5040, 1, 14, 96, 440, 1576, 4968, 14976, 40320, 1, 16, 126, 664, 2720, 9696, 33192, 115200, 362880, 1, 18, 160, 952, 4380, 17312, 64704, 247968, 996480
OFFSET
1,3
COMMENTS
Another version of triangle in A090238. - Philippe Deléham, Jun 14 2007
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
FORMULA
G.f. for k-th diagonal: (Sum_{i >= 1} i!*t^i)^k = Sum_{n >= k} T(n, k)*t^n.
T(n,k) = n! if k=1, 1 if k=n, Sum_{m=0..n-k} (m+1)!*T(n-m-1,k-1) otherwise. - Vladimir Kruchinin, Aug 18 2010
EXAMPLE
When read from left to right the rows {T(n,k), 1 <= k <= n} for n=1,2,3,... are 1; 2,1; 6,4,1; 24,16,6,1; ...
MATHEMATICA
nmax = 10; t[n_, k_] := Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 14 2011 *)
CROSSREFS
Sequence in context: A062344 A208759 A033877 * A369518 A199530 A208765
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
STATUS
approved