login
A059369
Triangle of numbers T(n,k) = T(n-1,k-1) + ((n+k-1)/k)*T(n-1,k), n >= 1, 1 <= k <= n, with T(n,1) = n!, T(n,n) = 1; read from right to left.
3
1, 1, 2, 1, 4, 6, 1, 6, 16, 24, 1, 8, 30, 72, 120, 1, 10, 48, 152, 372, 720, 1, 12, 70, 272, 828, 2208, 5040, 1, 14, 96, 440, 1576, 4968, 14976, 40320, 1, 16, 126, 664, 2720, 9696, 33192, 115200, 362880, 1, 18, 160, 952, 4380, 17312, 64704, 247968, 996480
OFFSET
1,3
COMMENTS
Another version of triangle in A090238. - Philippe Deléham, Jun 14 2007
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
FORMULA
G.f. for k-th diagonal: (Sum_{i >= 1} i!*t^i)^k = Sum_{n >= k} T(n, k)*t^n.
T(n,k) = n! if k=1, 1 if k=n, Sum_{m=0..n-k} (m+1)!*T(n-m-1,k-1) otherwise. - Vladimir Kruchinin, Aug 18 2010
EXAMPLE
When read from left to right the rows {T(n,k), 1 <= k <= n} for n=1,2,3,... are 1; 2,1; 6,4,1; 24,16,6,1; ...
MATHEMATICA
nmax = 10; t[n_, k_] := Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 14 2011 *)
CROSSREFS
Sequence in context: A062344 A208759 A033877 * A369518 A199530 A208765
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Jan 28 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
STATUS
approved