login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208765
Triangle of coefficients of polynomials u(n,x) jointly generated with A208766; see the Formula section.
3
1, 1, 2, 1, 4, 6, 1, 6, 18, 14, 1, 8, 36, 56, 38, 1, 10, 60, 140, 190, 94, 1, 12, 90, 280, 570, 564, 246, 1, 14, 126, 490, 1330, 1974, 1722, 622, 1, 16, 168, 784, 2660, 5264, 6888, 4976, 1606, 1, 18, 216, 1176, 4788, 11844, 20664, 22392, 14454, 4094, 1
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 18 2012
FORMULA
u(n,x) = u(n-1,x) + 2*x*v(n-1,x),
v(n,x) = 2*x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x-y*x+2*y*x^2-4*y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-4*y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 4*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = binomial(n-1,k)*A026597(k). (End)
EXAMPLE
First five rows:
1;
1, 2;
1, 4, 6;
1, 6, 18, 14;
1, 8, 36, 56, 38;
First five polynomials u(n,x):
1
1 + 2x
1 + 4x + 6x^2
1 + 6x + 18x^2 + 14x^3
1 + 8x + 36x^2 + 56x^3 + 38x^4
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 4, 6, 0;
1, 6, 18, 14, 0;
1, 8, 36, 56, 38, 0;
1, 10, 60, 140, 190, 94, 0. - Philippe Deléham, Mar 18 2012
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208765 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208766 *)
Rest[CoefficientList[CoefficientList[Series[(1-x-y*x+2*y*x^2-4*y^2*x^2)/( 1-2*x-y*x+x^2+y*x^2-4*y^2*x^2), {x, 0, 20}, {y, 0, 20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)
CROSSREFS
Sequence in context: A059369 A369518 A199530 * A232335 A098473 A121757
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved