OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -4/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 02 2012
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k), 0 <=k<=n :
G.f.: (1-x+2y*x)/(1-(1+y)*x -(4*y^2-y)*x^2). - Philippe Deléham, Mar 02 2012
As triangle T(n,k), 0<=k<=n : T(n,k) = T(n-1,k) + T(n-1,k-1) + 4*T(n-2,k-2) - T(n-2,k-1) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 02 2012
EXAMPLE
First five rows:
1
0...3
0...2...7
0...2...6...19
0...2...6...26...47
First five polynomials v(n,x):
1
3x
2x + 7x^2
2x + 6x^2 + 19x^3
2x + 6x^2 + 26x^3 + 47x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208763 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208764 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved