login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208764
Triangle of coefficients of polynomials v(n,x) jointly generated with A208763; see the Formula section.
3
1, 0, 3, 0, 2, 7, 0, 2, 6, 19, 0, 2, 6, 26, 47, 0, 2, 6, 34, 78, 123, 0, 2, 6, 42, 110, 258, 311, 0, 2, 6, 50, 142, 426, 758, 803, 0, 2, 6, 58, 174, 626, 1366, 2282, 2047, 0, 2, 6, 66, 206, 858, 2134, 4594, 6558, 5259, 0, 2, 6, 74, 238, 1122, 3062, 7866, 14334
OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -4/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 02 2012
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k), 0 <=k<=n :
G.f.: (1-x+2y*x)/(1-(1+y)*x -(4*y^2-y)*x^2). - Philippe Deléham, Mar 02 2012
As triangle T(n,k), 0<=k<=n : T(n,k) = T(n-1,k) + T(n-1,k-1) + 4*T(n-2,k-2) - T(n-2,k-1) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 02 2012
EXAMPLE
First five rows:
1
0...3
0...2...7
0...2...6...19
0...2...6...26...47
First five polynomials v(n,x):
1
3x
2x + 7x^2
2x + 6x^2 + 19x^3
2x + 6x^2 + 26x^3 + 47x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208763 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208764 *)
CROSSREFS
Sequence in context: A298058 A298707 A274417 * A209129 A368479 A282694
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 02 2012
STATUS
approved