login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208762
Triangle of coefficients of polynomials v(n,x) jointly generated with A208761; see the Formula section.
3
1, 2, 2, 3, 7, 4, 4, 17, 21, 8, 5, 34, 68, 55, 16, 6, 60, 174, 225, 137, 32, 7, 97, 384, 705, 674, 327, 64, 8, 147, 763, 1863, 2489, 1883, 761, 128, 9, 212, 1400, 4362, 7640, 8012, 5016, 1735, 256, 10, 294, 2412, 9318, 20542, 27996, 24144, 12885, 3897
OFFSET
1,2
COMMENTS
Alternating row sums: 1,0,0,0,0,0,0,0,0,... For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (2, -1/2, 1/2, 0 0 0 0 0 0 0 ...) DELTA (2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
Row sums are in A055099. - Philippe Deléham, Mar 04 2012
FORMULA
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k) with 0<=k<=n : T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Mar 04 2012
G.f.: (-1-x*y)*x*y/(-1+x*y+x^2*y+2*x^2*y^2+2*x-x^2). - R. J. Mathar, Aug 12 2015
EXAMPLE
First five rows:
1
2...2
3...7....4
4...17...21...8
5...34...68...55...16
First five polynomials v(n,x):
1
2 + 2x
3 + 7x + 4x^2
4 + 17x + 22x^2 + 8x^3
5 + 34x + 68x^2 + 55x^3 + 16x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1) v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208761 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208762 *)
CROSSREFS
Sequence in context: A222779 A222894 A210753 * A209746 A354950 A267822
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 03 2012
STATUS
approved