login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354950
The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs.
2
0, 1, 1, 1, 2, 2, 3, 7, 4, 9, 20, 31, 57, 88, 139, 282, 421, 806, 1397, 2572, 4440, 7863, 14580, 26211, 47727, 86929, 159972, 292650, 542477, 1000087, 1850347, 3432551, 6381199
OFFSET
1,5
FORMULA
Conjecture: Limit_{n->oo} log(a(n))/(n*log(n)) = c ~ 0.13... .
EXAMPLE
n prime(n) a(n) terms k of A070195 with A006530(k) = prime(n)
- -------- ---- ---------------------------------------------
1 2 0 -
2 3 1 6
3 5 1 30
4 7 1 42
5 11 2 462, 2310
6 13 2 858, 2730
7 17 3 102, 9282, 102102
8 19 7 570, 1482, 6270, 21318, 43890, 51870, 1939938
MATHEMATICA
a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)]; Array[a, 10]
PROG
(Python)
from math import prod
from itertools import combinations
from sympy import primerange, prime, isprime
def A354950(n):
plist = list(primerange(2, p:=prime(n)))
return sum(1 for l in range(1, n) for d in combinations(plist, l) if isprime((q:= prod(d)*p)-1) and isprime(q+1)) # Chai Wah Wu, Jun 14 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jun 13 2022
STATUS
approved