login
A354951
The number of squarefree abundant numbers whose largest prime divisor is prime(n).
1
0, 0, 1, 3, 5, 13, 27, 59, 125, 257, 534, 1094, 2244, 4607, 9407, 19164, 38939, 79154, 160473, 325213, 658940, 1332598, 2694009, 5440236, 10973874, 22135366, 44644593, 89989907, 181374472, 365371286, 734959945
OFFSET
1,4
COMMENTS
For n >= 3 we have a(n) >= 2^(n-3) as all squarefree numbers whose largest prime divisor are prime(n) that are a multiple of 6*prime(n) are abundant. - David A. Corneth, Jun 13 2022
EXAMPLE
n prime(n) a(n) terms k of A087248 with A006530(k) = prime(n)
- -------- ---- ---------------------------------------------
1 2 0 -
2 3 0 -
3 5 1 30
4 7 3 42, 70, 210
5 11 5 66, 330, 462, 770, 2310
MATHEMATICA
a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(SquareFreeQ[#] && DivisorSigma[-1, #] > 2 &)]; Array[a, 15]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Jun 13 2022
STATUS
approved