login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354953 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^5). 1
3, 3, 5, 9, 8, 9, 8, 7, 6, 0, 1, 2, 7, 2, 5, 3, 0, 8, 8, 3, 6, 4, 2, 7, 4, 3, 6, 8, 0, 6, 3, 3, 1, 3, 5, 7, 0, 4, 0, 7, 4, 7, 2, 6, 8, 9, 6, 0, 3, 4, 6, 9, 0, 0, 4, 1, 9, 4, 8, 6, 3, 1, 4, 0, 6, 4, 5, 8, 7, 2, 3, 3, 6, 8, 8, 3, 0, 4, 0, 4, 7, 7, 9, 2, 1, 0, 9, 8, 5, 4, 8, 4, 1, 4, 3, 9, 2, 3, 5, 5, 8, 0, 8, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
R. J. Mathar, Twenty digits of some integrals of the prime zeta function, arXiv:0811.4739 [math.NT], 2008-2018.
EXAMPLE
3.359898760127253088364274368063313570407472689603469004194863140645872...
MATHEMATICA
digits = 105; precision = digits + 15;
tmax = 400; (* integrand considered negligible beyond tmax *)
kmax = 400; (* f(k) considered negligible beyond kmax *)
InLogZeta[k_] := NIntegrate[(t-k)^4 Log[Zeta[t]], {t, k, tmax},
WorkingPrecision -> precision, MaxRecursion -> 20,
AccuracyGoal -> precision];
f[k_] := With[{mu = MoebiusMu[k]}, If[mu==0, 0, (mu/(4! k^6))* InLogZeta[k]]];
s = 0; Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 23 2022 *)
PROG
(PARI) default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(4!*k^6) * intnum(x=k, [[1], 1], (x-k)^4 * log(zeta(x))); print(s));
CROSSREFS
Sequence in context: A337562 A087343 A079586 * A125960 A141584 A287195
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 13 2022
EXTENSIONS
Last 5 digits corrected by Vaclav Kotesovec, Jun 22 2022, following a suggestion from Jean-François Alcover
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 14:03 EDT 2024. Contains 371870 sequences. (Running on oeis4.)