The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087248 Squarefree abundant numbers. 7
 30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 210, 222, 246, 258, 282, 318, 330, 354, 366, 390, 402, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 642, 654, 678, 690, 714, 762, 770, 786, 798, 822, 834, 858, 870, 894, 906, 910, 930, 942, 966, 978 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS First odd term is 15015 = 3 * 5 * 7 * 11 * 13, with 32 divisors that add up to 32256 = 2*15015 + 2226. See A112643. - Alonso del Arte, Nov 06 2017 The lower asymptotic density of this sequence is larger than 1/(2*Pi^2) = 0.05066... which is the density of its subsequence of squarefree numbers larger than 6 and divisible by 6. The number of terms below 10^k for k=1,2,... is 0, 5, 53, 556, 5505, 55345, 551577, 5521257, 55233676, 552179958, 5521420147, ..., so it seems that this sequence has an asymptotic density which equals to about 0.05521... - Amiram Eldar, Feb 13 2021 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA A005117 INTERSECT A005101. EXAMPLE Checking that 30 = 2 * 3 * 5 and sigma(30) = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72, which is more than twice 30, we verify that 30 is in the sequence. MAPLE isA005101 := proc(n)     simplify(numtheory[sigma](n)>2*n); end proc: isA087248 := proc(n)     isA005101(n) and numtheory[issqrfree](n) ; end proc: for n from 1 to 500 do     if isA087248(n) then         print(n);     end if; end do: # R. J. Mathar, Nov 10 2014 MATHEMATICA Select[Range[10^3], SquareFreeQ@ # && DivisorSigma[1, #] > 2 # &] (* Michael De Vlieger, Feb 05 2017 *) PROG (PARI) isA087248(i) = (sigma(i) > 2*i) && issquarefree(i) \\ Michel Marcus, Mar 09 2013 CROSSREFS Cf. A087244-A087248, A008683, A005117, A005101, A112643. Sequence in context: A034683 A328328 A302574 * A249242 A189759 A046401 Adjacent sequences:  A087245 A087246 A087247 * A087249 A087250 A087251 KEYWORD nonn AUTHOR Labos Elemer, Sep 05 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 20:49 EST 2022. Contains 350599 sequences. (Running on oeis4.)