login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112643
Odd squarefree abundant numbers.
12
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245
OFFSET
1,1
COMMENTS
Deviates from A046391 (does not contain 36465, 40755 for example).
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 134, 1663, 16328, 175630, 1694621, 16726454, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00016... . - Amiram Eldar, Sep 02 2022
From Amiram Eldar, Jan 15 2025: (Start)
The least term that is not divisible by 5 is a(3696) = 22309287.
The least term that is not divisible by 3 is a(5607800) = 33426748355.
The least term that is coprime to 15 is 1357656019974967471687377449. (End)
LINKS
FORMULA
A087248 INTERSECT A005408.
omega(a(n)) >= 5, where omega(n) = A001221(n) is the number of distinct primes dividing n. - Amiram Eldar, Jan 15 2025
EXAMPLE
199815 = 3 * 5 * 7 * 11 * 173, with 32 divisors adding up to 400896 = 2 * 199815 + 1266.
MAPLE
# see A087248 for the additional code
isA112643 := proc(n)
isA087248(n) and type(n, 'odd') ;
end proc:
for n from 1 do
if isA112643(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 10 2014
MATHEMATICA
ta = {{0}}; Do[g = n; s = DivisorSigma[1, n] - 2 * n; If[Greater[s, 0] && Equal[Abs[MoebiusMu[n]], 1] && !Equal[Mod[n, 2], 0], Print[n, PrimeFactorList[n], s]; ta = Append[ta, n]], {n, 1, 200000}]; {ta = Delete[ta, 1], g}(* Elemer *)
Select[Range[1, 99999, 2], MoebiusMu[#] != 0 && DivisorSigma[1, #] > 2 # &] (* Alonso del Arte, Nov 11 2017 *)
PROG
(PARI) is(n)=if(n%2==0, return(0)); my(f=factor(n)); sigma(f)>2*n && vecmax(f[, 2])==1 \\ Charles R Greathouse IV, Feb 21 2017
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Sep 20 2005
STATUS
approved