login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046391
Odd numbers with exactly 5 distinct prime factors.
7
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 36465, 39585, 40755, 41055, 42315, 42735, 45885, 47355, 49335, 49665, 50505, 51051, 51765, 53295, 54285, 55335, 55965, 57057, 57855, 58695, 61215, 61845, 62205
OFFSET
1,1
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
EXAMPLE
50505 = 3 * 5 * 7 * 13 * 37.
MAPLE
isA046391 := proc(n)
type(n, 'odd') and (A001221(n) = 5 ) ;
end proc:
for n from 1 do
if isA046391(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 10 2014
MATHEMATICA
f[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}&&FactorInteger[n][[1, 1]]>2; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 9!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
PROG
(Python)
from sympy import primefactors, factorint
print([n for n in range(1, 100000, 2) if len(primefactors(n)) == 5 and max(list(factorint(n).values())) < 2]) # Karl-Heinz Hofmann, Mar 01 2023
CROSSREFS
Intersection of A051270 and A005408.
Sequence in context: A081635 A165614 A104875 * A339938 A112643 A129485
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved