login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046394
Palindromes with exactly 4 distinct prime factors.
3
858, 2002, 2442, 3003, 4774, 5005, 5115, 6666, 10101, 15351, 17871, 22422, 22722, 24242, 26562, 26962, 28482, 35853, 36363, 41314, 43734, 43834, 45654, 47874, 49494, 49794, 49894, 51015, 51315, 51415, 53535, 53835, 53935, 56865, 58485
OFFSET
1,1
LINKS
MAPLE
filter:= proc(n) local F;
F:= ifactors(n)[2];
nops(F)=4 and max(map(t->t[2], F))=1
end proc:
makepali:= proc(n, d) local L;
L:= convert(n, base, 10);
if d::even then 10^(d/2)*n + add(L[i]*10^(d/2-i), i=1..d/2)
else 10^((d-1)/2)*n + add(L[i]*10^((d+1)/2-i), i=2..(d+1)/2)
fi
end proc:
select(filter, [seq(seq(makepali(x, d),
x=10^ceil(d/2-1)..10^ceil(d/2)-1), d=1..6)]); # Robert Israel, Jun 05 2018
MATHEMATICA
Select[Range[60000], PalindromeQ[#]&&PrimeNu[#]==Total[FactorInteger[#][[All, 2]]] == 4&] (* Harvey P. Dale, Apr 07 2022 *)
CROSSREFS
Sequence in context: A087002 A256743 A307330 * A163304 A252237 A284074
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved