

A046395


Palindromes with exactly 5 distinct prime factors.


2



6006, 8778, 20202, 28182, 41514, 43134, 50505, 68586, 87978, 111111, 141141, 168861, 202202, 204402, 209902, 246642, 249942, 262262, 266662, 303303, 323323, 393393, 399993, 438834, 454454, 505505, 507705, 515515, 516615, 519915, 534435, 535535, 543345
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

No exponent of the distinct prime factors can be greater than one, i.e., no prime powers are permitted.  Harvey P. Dale, Apr 09 2021 at the suggestion of Sean A. Irvine


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..500


EXAMPLE

505505 = 5 * 7 * 11 * 13 * 101.


MATHEMATICA

Select[Range[550000], PalindromeQ[#]&&PrimeNu[#]==PrimeOmega[#]==5&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 09 2021 *)


CROSSREFS

Cf. A046331.
Sequence in context: A250514 A343432 A115429 * A143043 A031605 A239176
Adjacent sequences: A046392 A046393 A046394 * A046396 A046397 A046398


KEYWORD

nonn,base


AUTHOR

Patrick De Geest, Jun 15 1998


EXTENSIONS

Corrected at the suggestion of Sean A. Irvine by Harvey P. Dale, Apr 09 2021


STATUS

approved



