|
|
A373465
|
|
Palindromes with exactly 5 distinct prime divisors.
|
|
3
|
|
|
6006, 8778, 20202, 28182, 40404, 41514, 43134, 50505, 60606, 63336, 66066, 68586, 80808, 83538, 86268, 87978, 111111, 141141, 168861, 171171, 202202, 204402, 209902, 210012, 212212, 219912, 225522, 231132, 232232, 239932, 246642, 249942, 252252, 258852, 262262, 266662, 272272
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1) = 6006 = 2 * 3 * 7 * 11 * 13 is a palindrome (A002113) with 5 prime divisors.
a(5) = 40404 = 2^2 * 3 * 7 * 13 * 37 also is a palindrome with 5 prime divisors, although the divisor 2 occurs twice as a factor in the factorization.
|
|
MATHEMATICA
|
Select[Range[300000], PalindromeQ[#]&&Length[FactorInteger[#]]==5&] (* James C. McMahon, Jun 08 2024 *)
Select[Range[300000], PalindromeQ[#]&&PrimeNu[#]==5&] (* Harvey P. Dale, Sep 01 2024 *)
|
|
PROG
|
(PARI) A373465_upto(N, start=1, num_fact=5)={ my(L=List()); while(N >= start = nxt_A002113(start), omega(start)==num_fact && listput(L, start)); L}
|
|
CROSSREFS
|
Cf. A046331 (same but counting prime factors with multiplicity), A046395 (same but squarefree), A373466 (same with omega = 6), A373467 (with omega = 7).
|
|
KEYWORD
|
nonn,base,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|