login
A051270
Numbers that are divisible by exactly 5 different primes.
26
2310, 2730, 3570, 3990, 4290, 4620, 4830, 5460, 5610, 6006, 6090, 6270, 6510, 6630, 6930, 7140, 7410, 7590, 7770, 7854, 7980, 8190, 8580, 8610, 8778, 8970, 9030, 9240, 9282, 9570, 9660, 9690, 9870, 10010, 10230, 10374, 10626, 10710, 10920, 11130, 11220, 11310
OFFSET
1,1
LINKS
Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
EXAMPLE
2730 = 2*3*5*7*13 is the first nontrivial 5-prime factor number following the 5th primorial, 2310 = 2*3*5*7*11.
MAPLE
A051270 := proc(n)
option remember;
local a;
if n = 1 then
2*3*5*7*11 ;
else
for a from procname(n-1)+1 do
if A001221(a)= 5 then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Oct 13 2019
MATHEMATICA
Select[Range[12000], PrimeNu[#]==5&] (* Harvey P. Dale, Feb 13 2012 *)
PROG
(PARI) is(n)=omega(n)==5 \\ Charles R Greathouse IV, Apr 29 2015
(PARI) A246655(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), listput(v, p^e))); Set(v)
list(lim, pr=5)=if(pr==1, return(A246655(lim))); my(v=List(), pr1=pr-1, mx=prod(i=1, pr1, prime(i))); forprime(p=prime(pr), lim\mx, my(u=list(lim\p, pr1)); for(i=1, #u, listput(v, p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
(Python)
from sympy import primefactors
print([n for n in range(2, 20001) if len(primefactors(n))==5]) # Indranil Ghosh, Apr 06 2017
CROSSREFS
A046303 is a subsequence.
Row 5 of A125666.
Sequence in context: A285487 A285744 A361039 * A046387 A136154 A376380
KEYWORD
nonn
AUTHOR
STATUS
approved