login
A000977
Numbers that are divisible by at least three different primes.
18
30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
OFFSET
1,1
COMMENTS
a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - Benoit Cloitre, Aug 27 2002
The first differences are bounded: clearly a(n+1) - a(n) <= 30. - Charles R Greathouse IV, Dec 19 2011
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
a(n) = n + O(n log log n / log n). - Charles R Greathouse IV, Dec 19 2011 A001221(a(n)) > 2. - Reinhard Zumkeller, May 03 2013
A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - R. J. Mathar, Dec 05 2016
MAPLE
A000977 := proc(n)
if (nops(numtheory[factorset](n)) >= 3) then
RETURN(n)
fi: end: seq(A000977(n), n=1..500); # Jani Melik, Feb 24 2011
MATHEMATICA
DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
Select[Range[300], PrimeNu[#] >= 3 &] (* Paolo Xausa, Mar 28 2024 *)
PROG
(PARI) is(n)=omega(n)>2 \\ Charles R Greathouse IV, Dec 19 2011
(Haskell)
a000977 n = a000977_list !! (n-1)
a000977_list = filter ((> 2) . a001221) [1..]
-- Reinhard Zumkeller, May 03 2013
CROSSREFS
Complement of A070915.
Sequence in context: A090800 A114816 A299991 * A214195 A033992 A360525
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002
STATUS
approved