

A000979


Wagstaff primes: primes of form (2^p + 1)/3.
(Formerly M2896 N1161)


29



3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, 62357403192785191176690552862561408838653121833643
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also, the primes with prime indices in the Jacobsthal sequence A001045.


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS



MATHEMATICA



PROG

(Haskell)
a000979 n = a000979_list !! (n1)
a000979_list = filter ((== 1) . a010051) a007583_list
(Python)
from gmpy2 import divexact
from sympy import prime, isprime
A000979 = [p for p in (divexact(2**prime(n)+1, 3) for n in range(2, 10**2)) if isprime(p)] # Chai Wah Wu, Sep 04 2014
(PARI) forprime(p=2, 10000, if(ispseudoprime(2^p\/3), print1(2^p\/3, ", "))) \\ Edward Jiang, Sep 05 2014


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



