OFFSET
2,1
COMMENTS
If (2^prime(n) + 1) / 3 is prime then a(n) is a Wagstaff prime (cf. A000979).
For n > 2, a(n) is congruent to 1 (mod 2*prime(n)).
EXAMPLE
a(2)=3 since for prime(2)=3, (2^3+1)/3 = 3;
a(3)=11 since for prime(3)=5, (2^5+1)/3 = 11;
a(10)=59 since for prime(10)=29, (2^29+1)/3 = 59*3033169.
MAPLE
a:= n-> min(numtheory[factorset]((2^ithprime(n)+1)/3)):
seq(a(n), n=2..30); # Alois P. Heinz, Feb 28 2023
PROG
(PARI) forprime(p=3, 100, An=(2^p+1)/3; if(isprime(An), print1(An, ", "), forprime(div=3, 2^((p-1)/2), if(An%div==0, print1(div, ", "); next(2)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Alain Rocchelli, Feb 08 2023
EXTENSIONS
a(26)-a(30) from Amiram Eldar, Feb 08 2023
STATUS
approved