login
A360475
Smallest prime factor of (2^prime(n) + 1) / 3.
0
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 59, 715827883, 1777, 83, 2932031007403, 283, 107, 2833, 768614336404564651, 7327657, 56409643, 1753, 201487636602438195784363, 499, 179, 971, 845100400152152934331135470251, 415141630193, 643, 104124649, 227
OFFSET
2,1
COMMENTS
If (2^prime(n) + 1) / 3 is prime then a(n) is a Wagstaff prime (cf. A000979).
For n > 2, a(n) is congruent to 1 (mod 2*prime(n)).
FORMULA
a(n) = A020639(A126614(n)).
EXAMPLE
a(2)=3 since for prime(2)=3, (2^3+1)/3 = 3;
a(3)=11 since for prime(3)=5, (2^5+1)/3 = 11;
a(10)=59 since for prime(10)=29, (2^29+1)/3 = 59*3033169.
MAPLE
a:= n-> min(numtheory[factorset]((2^ithprime(n)+1)/3)):
seq(a(n), n=2..30); # Alois P. Heinz, Feb 28 2023
PROG
(PARI) forprime(p=3, 100, An=(2^p+1)/3; if(isprime(An), print1(An, ", "), forprime(div=3, 2^((p-1)/2), if(An%div==0, print1(div, ", "); next(2)))))
CROSSREFS
Sequence in context: A349058 A051257 A135482 * A126614 A000979 A123628
KEYWORD
nonn
AUTHOR
Alain Rocchelli, Feb 08 2023
EXTENSIONS
a(26)-a(30) from Amiram Eldar, Feb 08 2023
STATUS
approved