login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126614
a(n) = (2^prime(n) + 1)/3.
16
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 178956971, 715827883, 45812984491, 733007751851, 2932031007403, 46912496118443, 3002399751580331, 192153584101141163, 768614336404564651, 49191317529892137643
OFFSET
2,1
COMMENTS
If p - 1 is squarefree, the multiplicative order of 2 modulo a(n) is 2p. - Vladimir Shevelev, Jul 15 2008
The prime numbers in this sequence are the Wagstaff primes (A000979). - Omar E. Pol, Nov 05 2013
LINKS
EXAMPLE
a(2) = (2^prime(2) + 1)/3 = (2^3 + 1)/3 = 9/3 = 3.
a(3) = (2^prime(3) + 1)/3 = (2^5 + 1)/3 = 33/3 = 11.
a(4) = (2^prime(4) + 1)/3 = (2^7 + 1)/3 = 129/3 = 43.
MATHEMATICA
Table[(2^Prime[n] + 1)/3, {n, 2, 20}]
PROG
(Magma) [(2^NthPrime(n)+1)/3: n in [2..20]]; // Vincenzo Librandi, Mar 29 2012
(PARI) a(n)=2^prime(n)\/3 \\ Charles R Greathouse IV, Mar 29 2012
(PARI) vecextract(apply(p->2^p\/3, primes(100)), "2..") \\ Charles R Greathouse IV, Mar 29 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 09 2007
STATUS
approved