login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046392
Palindromes with exactly 2 distinct prime factors.
3
6, 22, 33, 55, 77, 111, 141, 161, 202, 262, 303, 323, 393, 454, 505, 515, 535, 545, 565, 626, 707, 717, 737, 767, 818, 838, 878, 898, 939, 949, 959, 979, 989, 1111, 1441, 1661, 1991, 3113, 3223, 3443, 3883, 7117, 7447, 7997, 9119, 9229, 9449, 10001
OFFSET
1,1
LINKS
MAPLE
revdigs:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
f:= proc(n) local F;
F:= ifactors(n)[2];
if nops(F) = 2 and F[1, 2]=1 and F[2, 2]=1 then n fi
end proc:
N:=5: # for terms of up to N digits.
Res:= 6:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(f(n*10^m + revdigs(n)), n=10^(m-1)..10^m-1);
else
m:= (d-1)/2;
Res:= Res, seq(seq(f(n*10^(m+1)+y*10^m+revdigs(n)), y=0..9), n=10^(m-1)..10^m-1);
fi
od:
Res; # Robert Israel, Mar 24 2020
MATHEMATICA
pdpfQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn] && PrimeNu[n] == PrimeOmega[n] == 2]; Select[Range[11000], pdpfQ] (* Harvey P. Dale, Dec 16 2012 *)
PROG
(Python)
from sympy import factorint
from itertools import product
def pals(d, base=10): # all d-digit palindromes
digits = "".join(str(i) for i in range(base))
for p in product(digits, repeat=d//2):
if d > 1 and p[0] == "0": continue
left = "".join(p); right = left[::-1]
for mid in [[""], digits][d%2]: yield int(left + mid + right)
def ok(pal): f = factorint(pal); return len(f) == 2 and sum(f.values()) == 2
print(list(filter(ok, (p for d in range(1, 5) for p in pals(d) if ok(p))))) # Michael S. Branicky, Jun 22 2021
CROSSREFS
Intersection of A002113 and A006881.
Sequence in context: A020195 A035134 A075799 * A046408 A123017 A264043
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved