login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd squarefree abundant numbers.
12

%I #22 Sep 02 2022 04:55:00

%S 15015,19635,21945,23205,25935,26565,31395,33495,33915,35805,39585,

%T 41055,42315,42735,45885,47355,49665,50505,51765,54285,55965,58695,

%U 61215,64155,68145,70455,72345,77385,80535,82005,83265,84315,91245

%N Odd squarefree abundant numbers.

%C Deviates from A046391 (does not contain 36465, 40755 for example).

%C The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 134, 1663, 16328, 175630, 1694621, 16726454, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00016... . - _Amiram Eldar_, Sep 02 2022

%H Donovan Johnson, <a href="/A112643/b112643.txt">Table of n, a(n) for n = 1..10000</a>

%F A087248 INTERSECT A005408.

%e 199815 = 3 * 5 * 7 * 11 * 173, with 32 divisors adding up to 400896 = 2 * 199815 + 1266.

%p # see A087248 for the additional code

%p isA112643 := proc(n)

%p isA087248(n) and type(n,'odd') ;

%p end proc:

%p for n from 1 do

%p if isA112643(n) then

%p print(n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 10 2014

%t ta = {{0}}; Do[g = n; s = DivisorSigma[1, n] - 2 * n; If[Greater[s, 0] && Equal[Abs[MoebiusMu[n]], 1] && !Equal[Mod[n, 2], 0], Print[n, PrimeFactorList[n], s]; ta = Append[ta, n]], {n, 1, 200000}];{ta = Delete[ta, 1], g}(* Elemer *)

%t Select[Range[1, 99999, 2], MoebiusMu[#] != 0 && DivisorSigma[1, #] > 2 # &] (* _Alonso del Arte_, Nov 11 2017 *)

%o (PARI) is(n)=if(n%2==0, return(0)); my(f=factor(n)); sigma(f)>2*n && vecmax(f[,2])==1 \\ _Charles R Greathouse IV_, Feb 21 2017

%Y Cf. A087248, A046391.

%K nonn

%O 1,1

%A _Labos Elemer_, Sep 20 2005