login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369518
Array read by downward antidiagonals: A(n,k) = Sum_{j=0..k + (k mod 3) + 1} A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.
1
1, 1, 2, 1, 4, 6, 1, 6, 17, 23, 1, 5, 33, 80, 103, 1, 7, 24, 184, 408, 511, 1, 9, 41, 121, 1054, 2208, 2719, 1, 8, 63, 235, 643, 6196, 12486, 15205, 1, 10, 51, 411, 1363, 3571, 37244, 72992, 88197, 1, 12, 74, 309, 2625, 8057, 20543, 228092, 437821, 526018
OFFSET
0,3
LINKS
Terence Tao, Elegant recursion for A301897, answer to question on MathOverflow (2023).
FORMULA
A(n,3k) = A(n,3k-1) - A(n-1,3k+2), A(n,3k+1) = A(n,3k) + A(n-1,3k+2) + A(n-1,3k+3), A(n,3k+2) = A(n, 3k+1) + A(n-1,3k+4) + A(n-1,3k+5) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 24 2024
EXAMPLE
Array begins:
==================================================
n\k| 0 1 2 3 4 5 6 ...
---+----------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 2 4 6 5 7 9 8 ...
2 | 6 17 33 24 41 63 51 ...
3 | 23 80 184 121 235 411 309 ...
4 | 103 408 1054 643 1363 2625 1861 ...
5 | 511 2208 6196 3571 8057 16701 11296 ...
6 | 2719 12486 37244 20543 48540 106560 69376 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+3*m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-3, k, sum(j=1, k + (k-1)%3 + 1, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) }
CROSSREFS
Column k=0 is A301897 (with different offset).
Sequence in context: A208759 A033877 A059369 * A199530 A208765 A232335
KEYWORD
nonn,tabl
AUTHOR
Mikhail Kurkov, Jan 25 2024
STATUS
approved