OFFSET
0,3
LINKS
Terence Tao, Elegant recursion for A301897, answer to question on MathOverflow (2023).
FORMULA
A(n,3k) = A(n,3k-1) - A(n-1,3k+2), A(n,3k+1) = A(n,3k) + A(n-1,3k+2) + A(n-1,3k+3), A(n,3k+2) = A(n, 3k+1) + A(n-1,3k+4) + A(n-1,3k+5) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 24 2024
EXAMPLE
Array begins:
==================================================
n\k| 0 1 2 3 4 5 6 ...
---+----------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 2 4 6 5 7 9 8 ...
2 | 6 17 33 24 41 63 51 ...
3 | 23 80 184 121 235 411 309 ...
4 | 103 408 1054 643 1363 2625 1861 ...
5 | 511 2208 6196 3571 8057 16701 11296 ...
6 | 2719 12486 37244 20543 48540 106560 69376 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+3*m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-3, k, sum(j=1, k + (k-1)%3 + 1, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mikhail Kurkov, Jan 25 2024
STATUS
approved