login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369521
Sphenic numbers differing by more than 3 from any other squarefree number.
1
2526, 44405, 209674, 220209, 234622, 328877, 375823, 409737, 428947, 473673, 540026, 569427, 611174, 736077, 748673, 758423, 781747, 800022, 863722, 889251, 914878, 927622, 973927, 982398, 988478, 994061, 1003474, 1021602, 1072477, 1088877, 1150077, 1157822, 1158451, 1211822
OFFSET
1,1
COMMENTS
Sphenic numbers are the product of three distinct primes (cf. A007304).
LINKS
Robert Israel, Table of n, a(n) for n = 1..3273 (all terms < 10^8)
EXAMPLE
2526 = 2 * 3 * 421 is a sphenic number; 2523 = 3 * 29^2, 2524 = 2^2 * 631, 2525 = 5^2 * 101, 2527 = 7 * 19^2, 2528 = 2^5 * 79, 2529 = 3^2 * 281 are all nonsquarefree numbers, so 2526 is a term.
MAPLE
N:= 2*10^6: # to get all terms <= N
P:= select(isprime, [2, seq(i, i=3..N/6, 2)]):
nP:= nops(P): R:= NULL:
for i from 1 do
p:= P[i]; if p^3 >= N then break fi;
for j from i+1 do
q:= P[j]: if p*q^2 >= N then break fi;
for k from j+1 to nP do
x:= p*q*P[k];
if x > N then break fi;
if not ormap(numtheory:-issqrfree, [x-3, x-2, x-1, x+1, x+2, x+3]) then R:= R, x fi
od od od:
sort([R]); # Robert Israel, Feb 25 2024
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]], p}, p = Times @@ e; If[p > 1, 0, If[e == {1, 1, 1}, 1, -1]]]; SequencePosition[Array[f, 2*10^6], {0, 0, 0, 1, 0, 0, 0}][[;; , 1]] + 3 (* Amiram Eldar, Jan 25 2024 *)
CROSSREFS
Cf. A007304, A013929. Subsequence of A268332.
Sequence in context: A252288 A373704 A268332 * A203440 A231968 A172142
KEYWORD
nonn
AUTHOR
Massimo Kofler, Jan 25 2024
STATUS
approved