login
A369523
a(n) = n*(n^2 - 1)!.
0
1, 12, 120960, 5230697472000, 3102242008666197196800000, 61998887798316869577999908025139200000000, 86897409147752508696036023331613625269650404482744320000000000, 15860866523235520512929173666895185100358189521818149024850236796901838028800000000000000
OFFSET
1,2
COMMENTS
a(n) is the number of ways to fill an n X n square matrix with n^2 distinct elements such that a chosen element is in a designated row (or alternatively a column).
FORMULA
a(n) = (n^2)!/n.
a(n) = Integral_{x>=0} x^(n - 1)*exp(-x^(1/n)) dx.
MAPLE
seq(n*factorial(n^2-1), n=1..8);
MATHEMATICA
Table[n*(n^2-1)!, {n, 1, 8}]
PROG
(PARI) a(n) = n*(n^2-1)!
CROSSREFS
Sequence in context: A103482 A056540 A331093 * A328992 A069048 A284287
KEYWORD
nonn,easy
AUTHOR
Thomas Scheuerle, Jan 25 2024
STATUS
approved