login
A331093
Numbers such that the sum of their divisors, excluding 1 and the number itself, minus the sum of their digits equals the number.
2
12, 114256, 6988996, 8499988, 8689996, 8789788, 8877988, 8988868, 8999956, 9696988, 9759988, 9899596, 9948988, 9996868, 9998884, 9999892, 15996988, 16878988, 17799796, 17887996, 17988796, 17999884, 18579988, 18768988, 18869788, 18895996, 18958996, 18995788, 19398988, 19587988, 19698868, 19777996, 19799668
OFFSET
1,1
COMMENTS
After the second term, it seems that the digit sum is 55.
All terms after a(2) appear to be of the form 2^2 * 7 * p, where p is a prime. - Scott R. Shannon, Jan 09 2020
If there exists a third term not of the form 2^2*7*p, it is larger than 10^13. - Giovanni Resta, Jan 14 2020
EXAMPLE
a(3) = 6988996 as the sum of the divisors of 6988996, excluding 1 and 6988996, equals 6989051, the sum of its digits equals 55, and 6989051 - 55 = 6988996.
MATHEMATICA
Select[Range[10^7], DivisorSigma[1, #] - Plus @@ IntegerDigits[#] == 2 # + 1 &] (* Amiram Eldar, Jan 08 2020 *)
PROG
(PARI) isok(n) = sigma(n) - n - 1 - sumdigits(n) == n; \\ Michel Marcus, Jan 09 2020
CROSSREFS
Cf. A331037 (sum of divisors + digit sum = number).
Sequence in context: A051368 A103482 A056540 * A369523 A328992 A069048
KEYWORD
nonn,base,less
AUTHOR
Joseph E. Marrow, Jan 08 2020
EXTENSIONS
Terms a(7) and beyond from Scott R. Shannon, Jan 09 2020
STATUS
approved