login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331092
Positive numbers k such that k and k + 1 are both positive negaFibonacci-Niven numbers (A331085) and -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).
2
1, 744, 875, 924, 1115, 1575, 1704, 1955, 2904, 3815, 5495, 5844, 6125, 6335, 6824, 7136, 7314, 8154, 8225, 8360, 8784, 9414, 10535, 10744, 10935, 11976, 12047, 13194, 13404, 13475, 18024, 19368, 19943, 20615, 21791, 22224, 22560, 23807, 24143, 24576, 25752, 26424, 26999
OFFSET
1,2
COMMENTS
Positive numbers k such that both k and k + 1 are in A331091.
LINKS
MATHEMATICA
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
negFibQ[n_] := Divisible[n, negaFibTermsNum[n]] && Divisible[n, negaFibTermsNum[-n]];
nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
CROSSREFS
Intersection of A331086 and A331089.
Sequence in context: A289141 A345547 A345800 * A235294 A331674 A235252
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 08 2020
STATUS
approved