login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331089
Positive numbers k such that -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).
4
1, 2, 3, 15, 20, 21, 44, 50, 54, 55, 56, 57, 75, 104, 110, 111, 115, 128, 141, 152, 175, 207, 264, 291, 304, 308, 335, 351, 363, 376, 377, 380, 392, 398, 399, 435, 452, 455, 534, 584, 594, 605, 623, 654, 735, 740, 744, 753, 795, 804, 875, 884, 897, 924, 964, 968
OFFSET
1,2
COMMENTS
The Fibonacci numbers F(6*k + 2) and F(6*k + 4) are terms.
LINKS
MATHEMATICA
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 08 2020
STATUS
approved