login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331087
Starts of runs of 3 consecutive positive negaFibonacci-Niven numbers (A331085).
17
4, 12, 86, 87, 88, 176, 230, 231, 232, 320, 464, 655, 1194, 1592, 1596, 1854, 1914, 2815, 3016, 3294, 4124, 4178, 4179, 4180, 4268, 4412, 5663, 5755, 8360, 9894, 10614, 10703, 10915, 10975, 13936, 14994, 15114, 15714, 17630, 18976, 19984, 20824, 21835, 23175, 23513
OFFSET
1,1
COMMENTS
Numbers of the form F(6*k + 1) - 1, where F(m) is the m-th Fibonacci number, are terms.
Numbers of the form F(k) - 3, where k is congruent to {5, 11, 13, 19} mod 24 (A269819) are starts of runs of 5 consecutive negaFibonacci-Niven numbers.
LINKS
MATHEMATICA
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
negFibQ[n_] := Divisible[n, negaFibTermsNum[n]];
nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 08 2020
STATUS
approved