login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226960
Numbers n such that 1^n + 2^n + 3^n +...+ n^n == 2 (mod n).
12
1, 4, 12, 84, 3612
OFFSET
1,2
COMMENTS
Also, numbers n such that B(n)*n == 2 (mod n), where B(n) is the n-th Bernoulli number. Equivalently, SUM[prime p, (p-1) divides n] n/p == -2 (mod n). - Max Alekseyev, Aug 25 2013
LINKS
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcen. Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n). Discrete Applied Mathematics, 2018. doi:10.1016/j.dam.2018.05.022 arXiv:1602.02407 [math.NT]
MATHEMATICA
Select[Range[10000], Mod[Sum[PowerMod[i, #, #], {i, #}], #] == 2 &]
PROG
(PARI) is(n)=if(n%2, return(n==1)); Mod(sumdiv(n/2, d, if(isprime(2*d+1), n/(2*d+1)))+n/2, n)==-2 \\ Charles R Greathouse IV, Nov 13 2013
CROSSREFS
Subsequence of A124240.
Solutions to 1^n+2^n+...+n^n == m (mod n): A005408 (m=0), A014117 (m=1), this sequence (m=2), A226961 (m=3), A226962 (m=4), A226963 (m=5), A226964 (m=6), A226965 (m=7), A226966 (m=8), A226967 (m=9), A280041 (m=19), A280043 (m=43), A302343 (m=79), A302344 (m=193).
Sequence in context: A359047 A263866 A208802 * A081214 A331087 A194004
KEYWORD
nonn,fini,full
AUTHOR
EXTENSIONS
a(1)=1 prepended by Max Alekseyev, Aug 25 2013
STATUS
approved